Improving Saliency Models by Predicting Human Fixation Patches

نویسندگان

  • Rachit Dubey
  • Akshat Dave
  • Bernard Ghanem
چکیده

There is growing interest in studying the Human Visual System (HVS) to supplement and improve the performance of computer vision tasks. A major challenge for current visual saliency models is predicting saliency in cluttered scenes (i.e. high false positive rate). In this paper, we propose a fixation patch detector that predicts image patches that contain human fixations with high probability. Our proposed model detects sparse fixation patches with an accuracy of 84% and eliminates non-fixation patches with an accuracy of 84% demonstrating that lowlevel image features can indeed be used to short-list and identify human fixation patches. We then show how these detected fixation patches can be used as saliency priors for popular saliency models, thus, reducing false positives while maintaining true positives. Extensive experimental results show that our proposed approach allows state-of-the-art saliency methods to achieve better prediction performance on benchmark datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saccade Sequence Prediction: Beyond Static Saliency Maps

Visual attention is a field with a considerable history, with eye movement control and prediction forming an important subfield. Fixation modeling in the past decades has been largely dominated computationally by a number of highly influential bottom-up saliency models, such as the Itti-Koch-Niebur model. The accuracy of such models has dramatically increased recently due to deep learning. Howe...

متن کامل

Visual saliency in noisy images.

The human visual system possesses the remarkable ability to pick out salient objects in images. Even more impressive is its ability to do the very same in the presence of disturbances. In particular, the ability persists despite the presence of noise, poor weather, and other impediments to perfect vision. Meanwhile, noise can significantly degrade the accuracy of automated computational salienc...

متن کامل

Supersaliency: Predicting Smooth Pursuit-Based Attention with Slicing CNNs Improves Fixation Prediction for Naturalistic Videos

Predicting attention is a popular topic at the intersection of human and computer vision, but video saliency prediction has only recently begun to benefit from deep learning-based approaches. Even though most of the available video-based saliency data sets and models claim to target human observers’ fixations, they fail to differentiate them from smooth pursuit (SP), a major eye movement type t...

متن کامل

Visual saliency in image quality assessment

Advances in image quality assessment have shown the benefits of modelling functional components of the human visual system in image quality metrics. Visual saliency, a crucial aspect of the human visual system, is increasingly investigated recently. Current applications of visual saliency in image quality metrics are limited by our knowledge on the relation between visual saliency and quality p...

متن کامل

A Benchmark of Computational Models of Saliency to Predict Human Fixations

Many computational models of visual attention have been created from a wide variety of different approaches to predict where people look in images. Each model is usually introduced by demonstrating performances on new images, and it is hard to make immediate comparisons between models. To alleviate this problem, we propose a benchmark data set containing 300 natural images with eye tracking dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014